Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement
نویسندگان
چکیده
منابع مشابه
Surface-passivated plasmonic nano-pyramids for bulk heterojunction solar cell photocurrent enhancement.
We report that self-assembled gold (Au) nanopyramid arrays can greatly enhance the photocurrent of narrow bandgap organic solar cells using their plasmonic near-field effect. The plasmonic enhanced power conversion efficiency exhibited up to 200% increase under the AM 1.5 solar illumination.
متن کاملOptimizing ZnO nanoparticle surface for bulk heterojunction hybrid solar cells
The performance of hybrid solar cells composed of polymer and ZnO is mainly hindered by the defects of ZnO. Here, we investigate the effects of ZnO nanoparticle surface modification with poly(ethylene oxide) (PEO) on the performance of bulk heterojunction hybrid solar cells based on poly[2-methoxy-5-(2′-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) and ZnO nanoparticles. The reference devic...
متن کاملSurface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells.
We have systematically explored how plasmonic effects influence the characteristics of polymer photovoltaic devices (OPVs) incorporating a blend of poly(3-hexylthiophene) (P3HT) and [6,6]-phenyl-C(61)-butyric acid methyl ester (PCBM). We blended gold nanoparticles (Au NPs) into the anodic buffer layer to trigger localized surface plasmon resonance (LSPR), which enhanced the performance of the O...
متن کاملStability of Bulk-Heterojunction Blends for Solar Cell Applications
Polymer solar cells are a promising alternative to more traditional silicon solar cells. This is mainly due to the good solubility of organic semiconductors, which makes it possible to produce large-scale and mechanically flexible devices with roll-to-roll processes. To be able to fully utilise this promising technique the stability of the materials, used in these devices, must be guaranteed. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Nanoscale
سال: 2012
ISSN: 2040-3364,2040-3372
DOI: 10.1039/c2nr30735a